Fundamental of Digital Video Coding

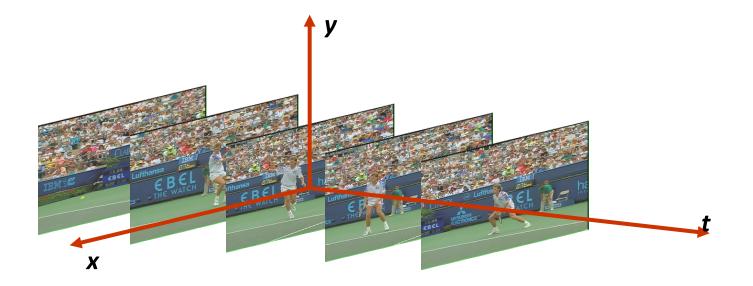
Lu FANG

TBSI

Outline

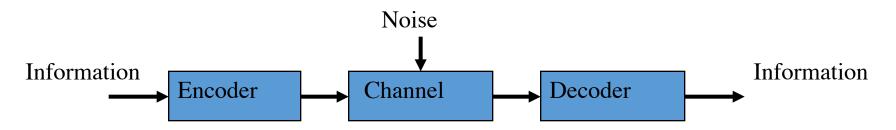
Digital Video Representation

- Application scenarios of video coding
- Theoretical basis of video coding
- Digital video formats


Current status of digital video/image coding standards

- Standard activities
- Brief description of standards

Digital Video Overview

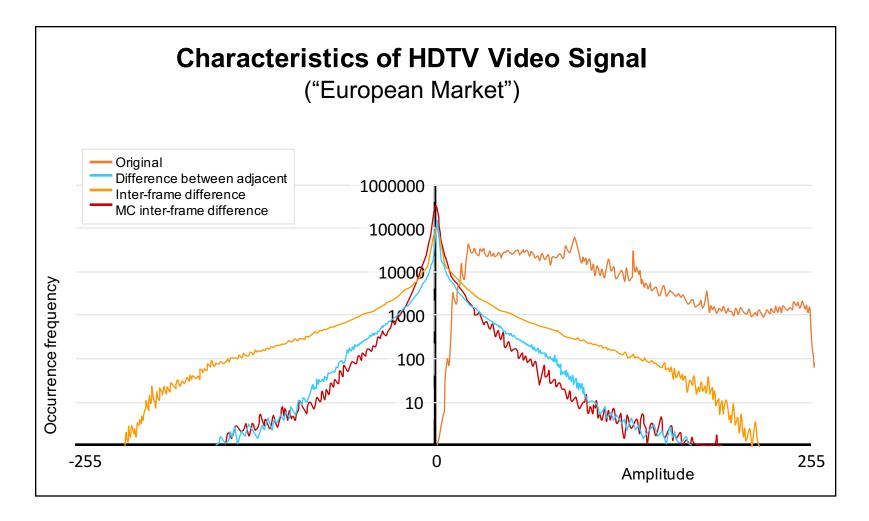

• Digital Video

$$f(x, y, t), (0 \le x \le N - 1, 0 \le y \le M - 1, t = 0, T, 2T, ...)$$

Scenario of video compression: transmission

Communication systems

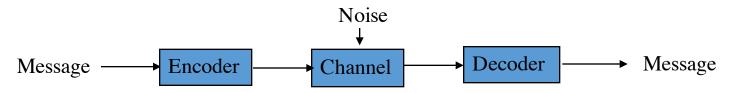
- Encoder
 - Source coding: remove redundancy correctly and keep as much information as possible for given data rate
 - Channel coding: add proper redundancy to protect information
- Channel
 - Capability or bandwidth allow maximum information transmission without information loss: Shanon Model
- Decoder:
 - Recovery information
 - Post processing


Scenario of video compression: storage

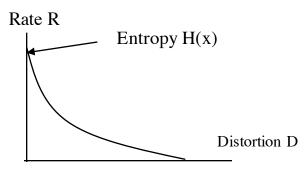
• Storage applications: such as DVD

- Encoder
 - To meet the fixed sized storage
 - To obtain maximum quality for a given size
- Almost error free environment
- Decoder
 - Multi-standard format

Characteristics of video signals



Basic principles of video compression


- Theoretical basis of digital video compression
 - Remove spatial and temporal redundancy that exist in natural video imagery
 - correlation itself can be removed in a lossless way
 - compression ratio dependent on the nature of images, about 2:1
 - important for medical applications
 - Psychophysical redundancy
 - exploit limitation in human visual system
 - reduced sensitivity to noise in high frequencies (edge of object)
 - save bits in a psychovisually lossless
 - Entropy coding
 - statistical method

Shannon' Model and rate distortion theory

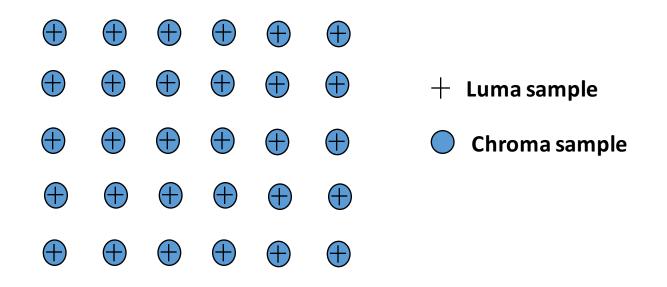
• Shannon's model of communication system

- How much information included in the message
- How can the information can be expressed effectively
- How can the information transmitted correctly over the noisy channel
- Rate distortion function

Fundamental technologies of video coding

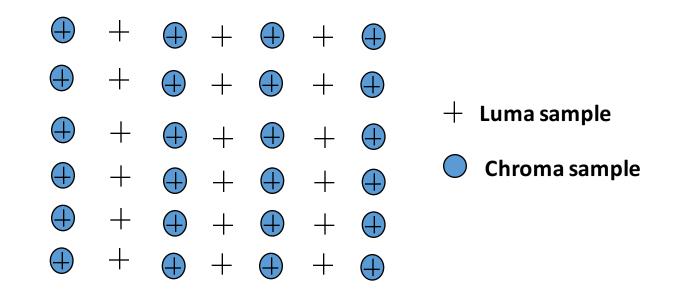
- Prediction
 - Reduce the redundancy in the video data
 - Intra frame prediction
 - Inter frame prediction with motion compensation
- Transform
 - Decomposition, not equal energy distribution
- Quantization
 - Reduce the information permitted by human visual system limit
 - Optimized quality according to the frequency sensitivity
- Entropy coding
 - Reduce bit rates according to the statistics of source data
 - Variable run length coding
 - Arithmetic coding

Video representation

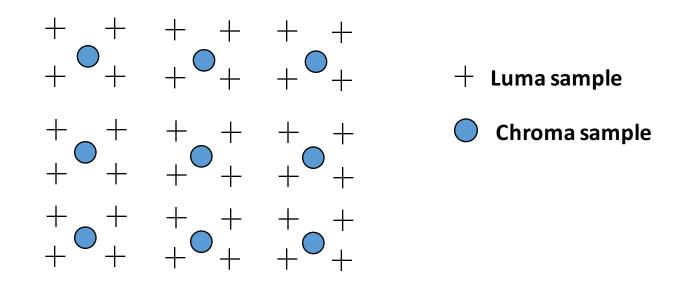

Color representation

- Colors can be represented by a mixture of three primaries: R, G, B
- Various equivalent color spaces are possible
- Many important color spaces comprise a luminance component and two chrominance components
- Color space standards
 - o ITU-RB.601 for SD
 - \circ ITU-RB.709 for HD
 - New standard xvYCC color space IEC-61966-2-4

Digital video formats


4:4:4 sampling format

• Chroma and luma samples are co-sited

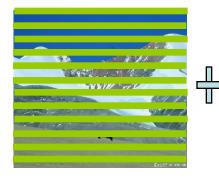

4:2:2 sampling format

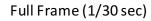
- Chroma and luma samples are co-sited
- Chroma subsampled

4:2:0 sampling format

- Chroma and luma samples are not co-sited
- Chroma is subsampled by two both horizontal and vertically

Progressive and Interlace


Part Frame scanned (1/60 sec)


Full Frame (1/60 sec)

Odd Field (1/60 sec)

Even Field (1/60) sec)

Why compress?

Video Format Y Size Color Sampling Frame Rate (Hz) Raw Data Rate (Mbps)

HDTV Over air. cable, satellite, MPEG2 video, 20-45 Mbps

SMPTE296M	265/332/664	1280x720		4:2:0	24P/30P/60P
SMPTE295M		1920x1080 597/746/746		4:2:0	24P/30P/60I
Video production, MPEG2, 15-50 Mbps					
BT.601		720x480/576 249		4:4:4	601/501
BT.601		720x480/576 166		4:2:2	601/501
High quality video distribution (DVD, SDTV), MPEG2, 4-10 Mbps					
BT.601		720x480/576 24		4:2:0	601/501 1
Intermediate quality video distribution (VCD, WWW), MPEG1, 1.5 Mbps					
SIF		352x240/288 30		4:2:0	30P/25P
Video conferencing over ISDN/Internet, H.261/H.263/MPEG4, 128-384 Kbps					
CIF		352x288	37	4:2:0	30P
Video telephony over wired/wireless modem, H.263/MPEG4, 20-64 Kbps					
QCIF		176x144	9.1	4:2:0	30P

Examples of Video Compression

Compression requirements for DTV:

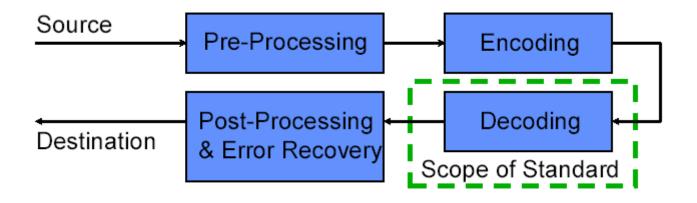
- to fit in a 6 MHz television channel
- to satisfy the channel requirement for networks
- to satisfy commercial picture quality

Compression ratio:

- NTSC (or PAL) : 168Mbps -> 6 Mbps, 28:1

168Mbps -> 4 Mbps. 42:1

- HDTV: 1.188 Gbps -> 19 Mbps, 60:1

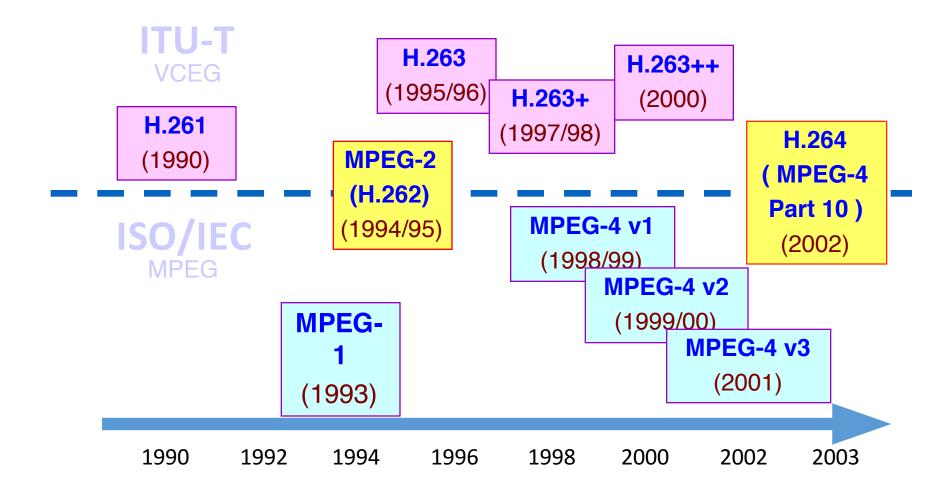

Compression method:

ISO/ITU Video Coding Standards

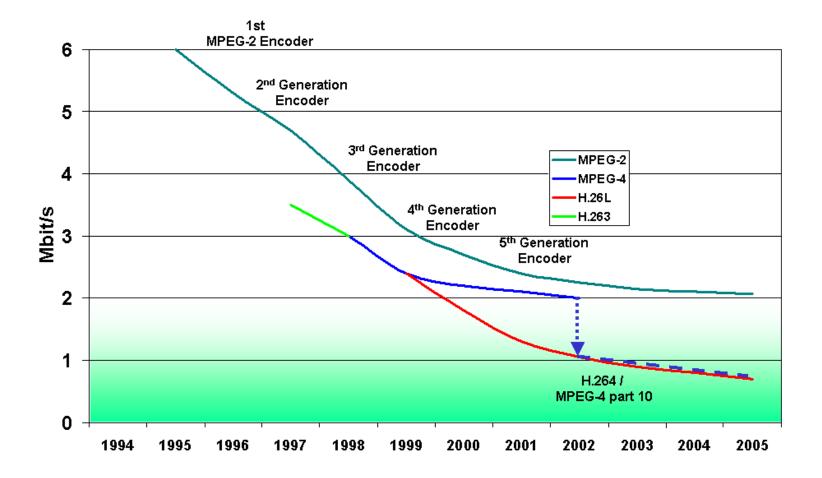
Note: the above bit rate is required to store 4:2:2 digital video, the active pixels of HDTV are interlaced 1920x1080

The Scope of Video Coding Standardization

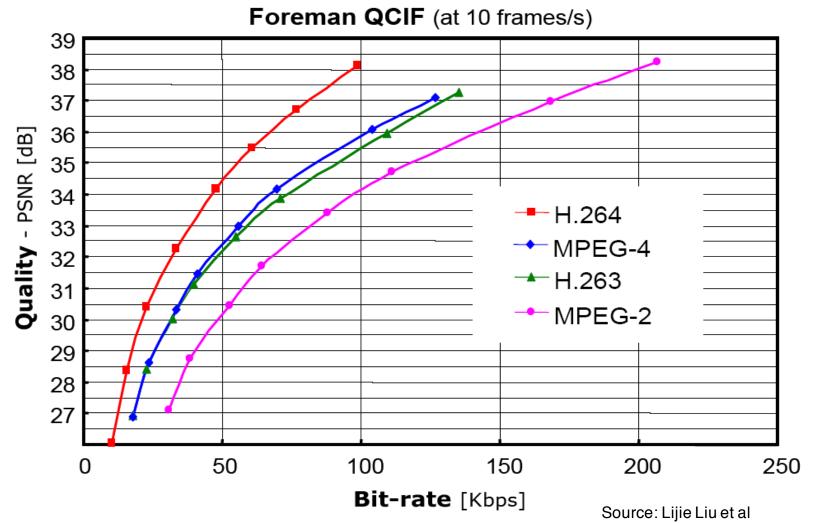
- Only restrictions on the Bitstream, Syntax, and Decoder are standardized:
 - Permits the optimization of encoding
 - Permits complexity reduction for implementability
 - Provides no guarantees on quality


MPEG video standards

- o MPEG-1 (1991)
 - Optimized for low rate coding of progressive scanned material at about 1.5 Mbps.
 - System multiplex optimized for error-free channels, primarily digital storage media
- o MPEG-2, H.262 (1994)
 - Optimized for low to high rate coding of interlaced and progressive scanned material.
 - System multiplex optimized-for error prone and error-free channels
 - Motion-compensated prediction and DCT transform coding
 - Entropy coding
- o MPEG-3
 - Original intended for HDTV coding, dropped when MPEG-2 application domain was extended to HDTV
- o MPEG-4 Part 2 (1999)
 - Originally intended for very low bit rate audio/visual coding, change to Object-oriented coding algorithm
 - It may be extended for both low and high bit rate application
- o MPEG-4 Part 10 AVC, H.264 (2002)
 - Advanced video coding with coding performance 2 times better than MPEG-2
 - It includes many new coding tools such as multiple reference frames, loop-filter, arithmetic entropy coding, intra frame prediction, integer transform, ...
- o MPEG-7 (2001)
 - There is no reason to pick up the series number 7 instead of 5 or 6 or other
 - Intend to set a standard of "Multimedia content description interface" that will specify a standardized description of various types of multimedia information.
- o MPEG-21
 - Multimedia framework including DRM, multimedia adaptation ..


ITU-T Video Coding

- H.261 (1990)
 - DCT-based motion-compensated scheme
 - Target bit rates are from 64Kbps to 1,920 Kbps
 - Used for video conference
- H.263 (1996)
 - Very low bit rate applications
 - Based on H.261 with several added features: unrestricted motion vectors, syntax-based arithmetic coding, advanced prediction and PB-frames
- H.263+ (1998)
 - Including a number of new optional features based on the H.263.
 - These new optional features are added in order to provide improved coding efficiency, a flexible video format, scalability and backward-compatible supplemental enhancement information.
- H.26L
 - Long term project which is looking for more efficient video coding algorithms.
 - H.264 started from H.26L


Chronological Table of Video Coding Standards

Coding performance of standards

Comparison between standards

Application scenarios of MPEG standards

• Resolution and bit-rate covered by MPEG videos

JPEG still image coding standards

o JPEG (1992)

- For still image coding
- DCT based
- Moving JPEG

JPEG2000 (2000)

- For still image coding
- Wavelet based
- Much better coding performance than JPEG
- Digital cinema and other professional applications

Concluding remarks

- Digital video representation formats
- The purposes of video compression
- Brief introduction of video/image coding standards

Thank You